Respuesta :
c. the original answer is t<3, but that is not a choice on there soooo, it is C. it has the answer, and its close enough.
i hope this helps.
i hope this helps.
Greetings!
Solve the Inequality:
[tex]3+|t+4|\ \textless \ 10[/tex]
Add -3 to both sides:
[tex](3+|t+4|\)+(-3) \textless \ 10+(-3)[/tex]
[tex]|t+4|\textless \ 7[/tex]
Solve the Absolute Value:
Condition One:
[tex]t+4\ \textgreater \ \ 7[/tex]
Add -4 to both sides:
[tex](t+4)+(-4)\ \textgreater \ \ (7)+(-4)[/tex]
[tex]t\ \textgreater \ \ 3[/tex]
Condition Two:
[tex]t+4\ \textless \ \ -7[/tex]
Add -4 to both sides:
[tex](t+4)+(-4)\ \textless \ \ (-7)+(-4)[/tex]
[tex]t\ \textless \ \ -11[/tex]
The Answer Is:
[tex]\boxed{t\ \textless \ 3} \\ \boxed{t\ \textgreater \ -11}[/tex]
I hope this helped!
-Benjamin
Solve the Inequality:
[tex]3+|t+4|\ \textless \ 10[/tex]
Add -3 to both sides:
[tex](3+|t+4|\)+(-3) \textless \ 10+(-3)[/tex]
[tex]|t+4|\textless \ 7[/tex]
Solve the Absolute Value:
Condition One:
[tex]t+4\ \textgreater \ \ 7[/tex]
Add -4 to both sides:
[tex](t+4)+(-4)\ \textgreater \ \ (7)+(-4)[/tex]
[tex]t\ \textgreater \ \ 3[/tex]
Condition Two:
[tex]t+4\ \textless \ \ -7[/tex]
Add -4 to both sides:
[tex](t+4)+(-4)\ \textless \ \ (-7)+(-4)[/tex]
[tex]t\ \textless \ \ -11[/tex]
The Answer Is:
[tex]\boxed{t\ \textless \ 3} \\ \boxed{t\ \textgreater \ -11}[/tex]
I hope this helped!
-Benjamin