Respuesta :
Answer:
A.[tex]x=\frac}log55.25}{3log6}[/tex]
Step-by-step explanation:
We are given that
[tex]4\cdot 6^{3x}=221[/tex]
We have to find the exact value of x.
To find the exact value of x we will take log on both sides.
[tex]6^{3x}=\frac{221}{4}[/tex]
Using division property of equality
[tex]6^{3x}=55.25[/tex]
Taking log on both sides of equality
Then, we get
[tex]3xlog6=log55.25[/tex]
Using property : [tex]logb^x=xlogb[/tex]
[tex]x=\frac{log55.25}{3log6}[/tex]
Using division property of equality
Hence, option A is true.