Match the products of rational expressions with their simplest forms. Tiles -3x^2/2y^2 x y^2/9x
5y^2 /10x^2 X 4x^2/y
9y^2/5x x -10x^2/3y
14x^2/5y x -10y/7x

Match the products of rational expressions with their simplest forms Tiles 3x22y2 x y29x 5y2 10x2 X 4x2y 9y25x x 10x23y 14x25y x 10y7x class=

Respuesta :

#1 tiles goes with -1/6 x
#2 tiles goes with 2y
#3 tiles goes with 6xy
and #4 Tiles the last one goes with -4x 

The tiles i start from left to right


Answer:

[tex]\frac{-3x^2}{2y^2} * \frac{y^2}{9x}=\frac{-1}{6}x[/tex]

[tex]\frac{5y^2}{10x^2} * \frac{4x^2}{y}= 2y[/tex]

[tex]\frac{-9y^2}{5x} * \frac{-10x^2}{3y}=6xy[/tex]

[tex]\frac{14x^2}{5y} * \frac{-10y}{7x}=-4x[/tex]

Step-by-step explanation:

(1) [tex]\frac{-3x^2}{2y^2} * \frac{y^2}{9x}[/tex]

cancel out y^2 at the top and bottom

x^2/x = x and -3/2*9 is -1/6

[tex]\frac{-3x^2}{2y^2} * \frac{y^2}{9x}=\frac{-1}{6}x[/tex]

(2)  [tex]\frac{5y^2}{10x^2} * \frac{4x^2}{y}[/tex]

y^2/y= y, x^2 cancelled out

5*10 / 4= 2

[tex]\frac{5y^2}{10x^2} * \frac{4x^2}{y}= 2y[/tex]

(3)  [tex]\frac{-9y^2}{5x} * \frac{-10x^2}{3y}[/tex]

x^2/x= x  and y^2/y=y

90/15 =6

[tex]\frac{-9y^2}{5x} * \frac{-10x^2}{3y}=6xy[/tex]

(4)  [tex]\frac{14x^2}{5y} * \frac{-10y}{7x}[/tex]

x^2/x= x, cancel out y

14/7 = 2  , -10/5 = -2

[tex]\frac{14x^2}{5y} * \frac{-10y}{7x}=-4x[/tex]