Respuesta :

This is multiplication.

First find g(n)*h(n).  It is (n^2 + 4 + 2n)*(-3n+2).  You could now do the algebra, but you could also substitute 1 for n right now.

(g*h)(1) = (1 + 4 + 2)(-3 + 2) = (7)(-1) = -7 (answer)

Please, use " ^ " to indicate exponentiation.  n 2 doesn't cut it.

A composite function is the combination of multiple functions.

The value of [tex](g.h)(1)[/tex] is [tex]-7[/tex]

We have:

[tex]g(n) = n^2 + 4 + 2n[/tex]

[tex]h(n) = -3n +2[/tex]

[tex](g.h)(n)[/tex] is calculated as:

[tex](g.h)(n) = g(n) \times h(n)[/tex]

So, we have:

[tex](g.h)(n) = (n^2 + 4 + 2n) \times (-3n + 2)[/tex]

Substitute 1 for n

[tex](g.h)(1) = (1^2 + 4 + 2 \times 1) \times (-3 \times 1 + 2)[/tex]

[tex](g.h)(1) = (7) \times (-1)[/tex]

[tex](g.h)(1) = -7[/tex]

Hence, the value of [tex](g.h)(1)[/tex] is [tex]-7[/tex]

Read more about composite functions at:

https://brainly.com/question/20379727