Respuesta :

Answer:

Yes!

Step-by-step explanation:

Using the unit circle, we find out that csc(120) = 2/[tex]\sqrt{3}[/tex] and

csc(-120) = - 2/[tex]\sqrt{3}[/tex] . So, -csc(120) = -2/[tex]\sqrt{3}[/tex]  .

Note that -120 degrees is actually 240 degrees

The value of cosec(-120) is equal to -cosec(120).

What is trigonometry?

Trigonometry is one of the important branches in the history of mathematics that deals with the study of the relationship between the sides and angles of a right-angled triangle.

According to the given problem,

cosec(x) = [tex]\frac{1}{sin(x)}[/tex]

sin (60) = [tex]\frac{\sqrt{3} }{2}[/tex]

We know, -120° is in the third quadrant, where sine < 0

⇒ cosec ( -120 ) =  - sin (60)

⇒ cosec ( -120)

= [tex]\frac{1}{-sin(60)}[/tex]

=[tex]-\frac{1}{\frac{\sqrt{3} }{2} }[/tex]

= [tex]-\frac{2}{\sqrt{3} }[/tex]

Rationalizing the denominator:

= [tex]-\frac{2}{\sqrt{3} }[/tex] × [tex]\frac{\sqrt{3} }{\sqrt{3} }[/tex]

= [tex]-\frac{2\sqrt{3} }{3}[/tex]

= -cosec (120)

Hence, we can conclude, the value of cosec(-120) is -cosec(120).

Lear more about trigonometry here: https://brainly.com/question/26719838

#SPJ2