Respuesta :
Probability of rolling no sixes = (3/4)^3 = 27/64
Probability of first one being 6 and the rest Not 6 = 1/4 * 3/4* 3/4 = 9/64
THere are 3 ways for this to happen so total probability of 1 six = 27/64
Therefore Probability of 2 or more sixes = 1 - 2(27/64) = 10/54 = 5/27
Answer is 5/27
Probability of first one being 6 and the rest Not 6 = 1/4 * 3/4* 3/4 = 9/64
THere are 3 ways for this to happen so total probability of 1 six = 27/64
Therefore Probability of 2 or more sixes = 1 - 2(27/64) = 10/54 = 5/27
Answer is 5/27
Answer:
[tex]\frac{1}{4}[/tex]
Step-by-step explanation:
Three events A, B and C are said to be independent if occurrence of one outcome does not affect the other .
In such case P ( A and B and C ) = P(A) × P(B) × P (C)
Given : A weighted die, numbered one through six, has a probability of 1/4 of rolling a six .
As the die is rolled three times, possible outcomes are [tex]\left \{ \left ( 6,6,1 \right )\,,\,\left ( 6,6,2 \right )\,,\,\left ( 6,6,3 \right )\,,\,\left ( 6,6,4 \right )\,,\,\left ( 6,6,5 \right )\,,\,\left ( 6,6,6 \right ) \right \}[/tex]
Let E denotes the event: 6 occurs
Let F denotes the event that 6 does not occur .
Given: P(E) = [tex]\frac{1}{4}[/tex]
So, P(F) = [tex]1-\frac{1}{4}=\frac{3}{4}[/tex]
Therefore, probability of rolling at least two sixes = [tex]P\left ( 6,6,1 \right )+P\left ( 6,6,2 \right )+P\left ( 6,6,3 \right )+P\left ( 6,6,4 \right )+P\left ( 6,6,5 \right )+P\left ( 6,6,6 \right )[/tex]
[tex]=\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{3}{4} \right )+\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{3}{4} \right )+\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{3}{4} \right )+\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{3}{4} \right )+\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{3}{4} \right )+\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )\left ( \frac{1}{4} \right )[/tex]
[tex]=\frac{3}{64}+\frac{3}{64}+\frac{3}{64}+\frac{3}{64}+\frac{3}{64}+\frac{1}{64}\\\\=\frac{16}{64}\\\\=\frac{1}{4}[/tex]