Respuesta :

Space

Answer:

[tex]\displaystyle \frac{d}{dx}[\sqrt{2x}] = \frac{\sqrt{2}}{2\sqrt{x}}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \sqrt{2x}[/tex]

Step 2: Differentiate

  1. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle \frac{dy}{dx} = \frac{1}{2\sqrt{2x}} \cdot \frac{d}{dx}[2x][/tex]
  2. Basic Power Rule [Derivative Property - Multiplied Constant]:                 [tex]\displaystyle \frac{dy}{dx} = \frac{2}{2\sqrt{2x}}[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle \frac{dy}{dx} = \frac{1}{\sqrt{2x}}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation