Respuesta :
Sn = a1 (1-r^n) / (1-r)
= -3 (1- (-6)^7) / (1-(-6))
= -3 (1-(-279936)) / 7
= -3 (279937) / 7
= -119,973 #
= -3 (1- (-6)^7) / (1-(-6))
= -3 (1-(-279936)) / 7
= -3 (279937) / 7
= -119,973 #
Answer:
The correct option is: -119,973
Step-by-step explanation:
Geometric sequence: -3, 18, -108, ..............
First term, [tex]a_{1}= -3[/tex]
Common ratio, [tex]r= \frac{a_{2}}{a_{1}} =\frac{18}{-3}= -6[/tex]
Number of terms in the sequence, [tex]n= 7[/tex]
Sum of n terms: [tex]S_{n}= \frac{a_{1}(1- r^n)}{1-r}[/tex]
So, sum of 7 terms,
[tex]S_{7}= \frac{-3[1-(-6)^7]}{1-(-6)} = \frac{-3(1+279936)}{1+6}=\frac{-839811}{7}=-119973[/tex]