Please help ASAP! Find the midpoint between the complex numbers.

z1 = 9 - 9i
z2 = 10 - 9i

(9.5, 9)
(-0.5, 0)
(19, -18)
(9.5, -9)

Respuesta :

[tex]\bf \begin{cases} z1=9-9i\implies &(9~,~-9)\\ z2=10-9i\implies &(10~,~-9) \end{cases}[/tex]

[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points }\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &&(~ 9 &,& -9~) % (c,d) &&(~ 10 &,& -9~) \end{array}\qquad % coordinates of midpoint \left(\cfrac{ x_2 + x_1}{2}\quad ,\quad \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{10+9}{2}~~,~~\cfrac{-9-9}{2} \right)\implies \left( \cfrac{19}{2}~~~,~~\cfrac{-18}{2} \right) \\\\\\ \left( \cfrac{19}{2}~~~,~~-9 \right)\implies \left( 9\frac{1}{2}~~~,~~-9 \right)[/tex]

Answer:

(9.5, -9)

Step-by-step explanation: