Respuesta :

the equation for the parabola would be: [tex]y=-6(x+5)^2+9[/tex]

The equation of a parabola is of the form [tex]y = a(x - h)^2+ k[/tex]

The equation of the parabola is: [tex]y = -6(x + 5)^2 + 9[/tex]

The given parameters are:

[tex](h,k) = (-5,9)[/tex] --- the vertex

[tex](x,y) = (-7,-15)[/tex]

Substitute [tex](h,k) = (-5,9)[/tex] in [tex]y = a(x - h)^2+ k[/tex]

[tex]y = a(x --5)^2 + 9[/tex]

[tex]y = a(x +5)^2 + 9[/tex]

Substitute [tex](x,y) = (-7,-15)[/tex]

[tex]-15 = a(-7 +5)^2 + 9[/tex]

[tex]-15 = a(-2)^2 + 9[/tex]

Collect like terms

[tex]-9-15 = a(-2)^2[/tex]

[tex]-24 = a(-2)^2[/tex]

[tex]-24 = 4a[/tex]

Divide both sides by 4

[tex]-6 = a[/tex]

Rewrite as:

[tex]a = -6[/tex]

Substitute [tex]a = -6[/tex] in [tex]y = a(x +5)^2 + 9[/tex]

[tex]y = -6(x + 5)^2 + 9[/tex]

Hence, the equation of the parabola is: [tex]y = -6(x + 5)^2 + 9[/tex]

Read more about equations of parabola at:

https://brainly.com/question/4074088