assuming you mean [tex]\frac{-5+i}{2i}[/tex]
and [tex]i=\sqrt{-1}[/tex]
recall that [tex]i^2=-1[/tex]
we want to get it into a+bi form
we can separate it into
[tex]\frac{-5}{2i}+\frac{i}{2i}[/tex]
this equals
[tex]\frac{-5}{2i}+\frac{1}{2}[/tex]
we can multiply the first fraction by i/i to get
[tex]\frac{-5i}{2i^2}+\frac{1}{2}[/tex]
[tex]\frac{-5i}{2(-1)}+\frac{1}{2}[/tex]
[tex]\frac{-5i}{-2}+\frac{1}[2}[/tex]
[tex]\frac{5}{2}i+\frac{1}{2}[/tex]
in a+bi form it is
[tex]\frac{1}{2}+\frac{5}{2}i[/tex]