Respuesta :
A. how much work is done by friction as the sled moves 30.0 m along the hill
We use the formula:
friction work = -µmgdcosΘ
friction work = -0.100 * 90 kg * 9.8 m/s^2 * 30 m * cos 60
friction work = - 1,323 J
B. how much work is done by the rope on the sled in this distance?
We use the formula:
rope work = -mgd(sinΘ - µcosΘ)
rope work = - 90 kg * 9.8 m/s^2
* 30 m (sin 60 – 0.100 * cos 60)
rope work = 21,592 J
C. what is the work done by the gravitational force on the sled?
We use the formula:
gravity work = mgdsinΘ
gravity work = 90 kg * 9.8 m/s^2 * 30 m * sin 60
gravity work = 22,915 J
D. what is the total work done?
We add everything:
total work = - 1,323 J + 21,592 J + 22,915 J
total work = 43,184 J
Part (a): the work done by friction is [tex]\boxed{1324.35\text{ J}}[/tex]
Part (b): the work done by rope is [tex]\boxed{21614.07\text{ J}}[/tex].
Part (c): the work done by gravitational force is [tex]\boxed{22938.42\text{ J}}[/tex].
Part (d): total work done is [tex]\boxed{43228.14\text{ J}}[/tex].
Further Explanation:
The rope is doing work against the gravity. The friction always acts against the direction of motion. Therefore, the friction is in direction of gravity.
Given:
Mass of victim is [tex]90\text{ kg}[/tex].
The inclination of plane is [tex]60^\circ[/tex].
The coefficient of plane is [tex]0.1[/tex].
The distance travelled on plane is [tex]30\text{ m}[/tex].
Concept:
Equations for free body diagram of victim:
Force equation:
Normal force on sled is [tex]mgcos\theta[/tex].
Friction force:
[tex]f=\mu N[/tex]
Substitute [tex]mgcos\theta[/tex] for [tex]N[/tex] in above equation.
[tex]f=\mu mgcos\theta[/tex]
Here, [tex]f[/tex] is the friction force, [tex]m[/tex] is the mass of victim, [tex]g[/tex] is the gravitational acceleration, [tex]\mu[/tex] is the coefficient of friction and [tex]\theta[/tex] is the inclination of plane.
The gravitational force on the sled is [tex]mgsin\theta[/tex].
Work equation:
(a)
Work done by friction:
[tex]W_f=-fd[/tex]
Substitute [tex]\mu mgcos\theta[/tex] for [tex]f[/tex] in above equation.
[tex]\boxed{W_f=-\mu mdgcos\theta}[/tex]
Substitute [tex]90\text{ kg}[/tex] for [tex]m[/tex], [tex]30\text{ m}[/tex] for [tex]d[/tex], [tex]9.81\text{ m}/\text{s}^2[/tex] for [tex]g[/tex], [tex]0.1[/tex] for [tex]\mu[/tex] and [tex]60^\circ[/tex] for [tex]\theta[/tex] in above equation.
[tex]\begin{aligned}W_f&=-0.1\times90\times30\times9.81\times cos\theta\\&=-1324.35\text{ J}\end{aligned}[/tex]
Negative sign shows that friction is acting against the motion.
Thus, the work done by friction is [tex]\boxed{1324.35\text{ J}}[/tex]
(b)
Work done by rope:
[tex]\boxed{W_r=mdgsin\theta+W_f}[/tex]
Substitute [tex]90\text{ kg}[/tex] for [tex]m[/tex], [tex]30\text{ m}[/tex] for [tex]d[/tex], [tex]9.81\text{ m}/\text{s}^2[/tex] for [tex]g[/tex], [tex]60^\circ[/tex] for [tex]\theta[/tex] and [tex]-1324.35\text{ J}[/tex] for [tex]W_f[/tex] in above equation.
[tex]\begin{aligned}W_r&=90\times30\times9.81\times sin60^\circ-1324.35\text{ J}\\&=21614.07\text{ J}\end{aligned}[/tex]
Thus, the work done by rope is [tex]\boxed{21614.07\text{ J}}[/tex].
(c)
Work done by gravitational force:
[tex]\boxed{W_w=mdgsin\theta}[/tex]
Substitute [tex]90\text{ kg}[/tex] for [tex]m[/tex], [tex]30\text{ m}[/tex] for [tex]d[/tex], [tex]9.81\text{ m}/\text{s}^2[/tex] for [tex]g[/tex] and [tex]60^\circ[/tex] for [tex]\theta[/tex] in above equation.
[tex]\begin{aligned}W_w&=90\times30\times9.81\times sin60^\circ\\&=22938.42\text{ J}\end{aligned}[/tex]
Thus, the work done by gravitational force is [tex]\boxed{22938.42\text{ J}}[/tex].
(d)
Total work done:
[tex]\boxed{W=W_r+W_w+W_f}[/tex]
Substitute [tex]21614.07\text{ J}[/tex] for [tex]W_r[/tex], [tex]22938.42\text{ J}[/tex] for [tex]W_w[/tex] and [tex]\boxed{-1324.35\text{ J}}[/tex] for [tex]W_f[/tex] in above equation.
[tex]\begin{aligned}W&=21614.07+22938.42-1324.35\text{ J}\\&=43228.14\text{ J}\end{aligned}[/tex]
Thus, total work done is [tex]\boxed{43228.14\text{ J}}[/tex]
Learn more:
1. Motion on a rough surface: https://brainly.com/question/7031524
2. Motion under the gravitational force: https://brainly.com/question/10934170
3. Principle of conservation of momentum: https://brainly.com/question/9484203
Answer Details:
Grade: College
Subject: Physics
Chapter: Kinematics
Keywords:
Ski patrol, rescue, sled, victim, mass, 90.0 kg, 60.0°, slope, coefficient, friction, snow, 0.100, work, 30.0 m, along, hill, distance and gravitational force