Two triangles can be formed with the given information. Use the Law of Sines to solve the triangles. A = 59°, a = 13, b = 14
An explanation would be gravely appreciated.

Respuesta :

Answer:

First triangle

[tex]B=67.4\°[/tex]

[tex]C=53.6\°[/tex]

[tex]c=12.2\ units[/tex]

Second triangle

[tex]B=112.6\°[/tex]

[tex]C=8.4\°[/tex]

[tex]c=2.2\ units[/tex]

Step-by-step explanation:

In this problem we have

[tex]A=59\°[/tex]

[tex]a=13\ units[/tex]

[tex]b=14\ units[/tex]

First Triangle

Step 1

Find the value of angle B

Applying the law of sines

[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}[/tex]

substitute and solve for B

[tex]\frac{13}{sin(59\°)} =\frac{14}{sin(B)}\\ \\sin(B)=14*sin( 59\°)/13\\ \\sin(B)=0.9231\\ \\B=arcsin(0.9231)\\ \\B=67.4\°[/tex]

There are two measures of angle B, supplementary to each other

Step 2

Find the value of angle C

Remember that

the sum of the internal angles of a triangle is equal to [tex]180\°[/tex]

so

[tex]A+B+C=180\°[/tex]

we have

[tex]A=59\°[/tex]

[tex]B=67.4\°[/tex]

substitute and solve for C

[tex]59\°+67.4\°+C=180\°[/tex]

[tex]C=180\°-(59\°+67.4\°)=53.6\°[/tex]

Step 3

Find the measure of side c

Applying the law of sines

[tex]\frac{a}{sin(A)} =\frac{c}{sin(C)}[/tex]

substitute and solve for c

[tex]\frac{13}{sin(59\°)} =\frac{c}{sin(53.6\°)}[/tex]

[tex]c=\frac{13}{sin(59\°)}*sin(53.6\°)\\\\c=12.2\ units[/tex]

Second Triangle

Step 1

Find the value of angle B

Applying the law of sines

[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}[/tex]

substitute and solve for B

[tex]\frac{13}{sin(59\°)} =\frac{14}{sin(B)}\\ \\sin(B)=14*sin( 59\°)/13\\ \\sin(B)=0.9231\\ \\B=arcsin(0.9231)\\ \\B=67.4\°[/tex]

Remember that the angle B can take two values

[tex]B=180\°-67.4\°=112.6\°[/tex]

Step 2

Find the value of angle C

Remember that

the sum of the internal angles of a triangle is equal to [tex]180\°[/tex]

so

[tex]A+B+C=180\°[/tex]

we have

[tex]A=59\°[/tex]

[tex]B=112.6\°[/tex]

substitute and solve for C

[tex]59\°+112.6\°+C=180\°[/tex]

[tex]C=180\°-(59\°+112.6\°)=8.4\°[/tex]

Step 3

Find the measure of side c

Applying the law of sines

[tex]\frac{a}{sin(A)} =\frac{c}{sin(C)}[/tex]

substitute and solve for c

[tex]\frac{13}{sin(59\°)} =\frac{c}{sin(8.4\°)}[/tex]

[tex]c=\frac{13}{sin(59\°)}*sin(8.4\°)\\\\c=2.2\ units[/tex]