Simplify parenthesis 1 minus cosine theta parenthesis times parenthesis 1 plus cosine theta parenthesis divided by parenthesis 1 minus sine theta parenthesis times parenthesis 1 plus sine theta parenthesis.

sin2 θ
cos2 θ
tan2 θ
cosine theta over sine theta

Respuesta :

The identities used to simplify the expression are the following:

The difference of squares formula, [tex]x^2-y^2=(x-y)(x+y)[/tex].

The well-known Pythagorean trig. identity, [tex]\sin^2\theta+\cos^2\theta=1[/tex], for any angle theta.

Last, the identity  [tex]\displaystyle{ \frac{\sin\theta}{\cos\theta}=\tan\theta.[/tex] 


Thus, from the difference of squares identity we have

[tex]\displaystyle{ \frac{(1-\cos\theta)(1+\cos\theta)}{(1-\sin\theta)(1+\sin\theta)}= \frac{1-\cos^2\theta}{1-\sin^2\theta}.[/tex]


From the identity [tex]\sin^2\theta+\cos^2\theta=1[/tex], we have 

[tex]\sin^2\theta=1-\cos^2\theta[/tex], and [tex]\cos^2\theta=1-\sin^2\theta[/tex], thus

[tex]\displaystyle{ \frac{1-\cos^2\theta}{1-\sin^2\theta}= \frac{\sin^2\theta}{\cos^2\theta}= (\frac{\sin\theta}{\cos\theta})^2=\tan^2\theta.[/tex]


Answer: [tex]\tan^2\theta.[/tex]

Answer:

c

Step-by-step explanation: