Respuesta :

I'm taking the liberty of editing your  function  v = e5xey:  It should be 

v = e^5x^ey, with " ^ " indicating exponentiation.

Did you mean e^(5x) or (e^5)x?  I'll assume it's e^(5x).

The partial of   v = e^(5x)e^y with respect to x is e^(5x)(5)*e^y, or 25x*e^y.

The partial of v = e^(5x)e^y with respect to y is e^(5x)e^y.

The second partial derivatives are [tex]\dfrac{\partial^2 v}{\partial x^2}=25e^{5x+y},\dfrac{\partial^2 v}{\partial y^2}=e^{5x+y},\dfrac{\partial^2 v}{\partial x\partial y}=5e^{5x+y}[/tex] and [tex]\dfrac{\partial^2 v}{\partial y\partial x}=5e^{5x+y}[/tex]

Given:

The given function is:

[tex]v=e^{5x}e^y[/tex]

To find:

All the second partial derivatives.

Explanation:

We have,

[tex]v=e^{5x}e^y[/tex]

[tex]v=e^{5x+y}[/tex]

First partial derivatives are:

[tex]\dfrac{\partial v}{\partial x}=5e^{5x+y}[/tex]

[tex]\dfrac{\partial v}{\partial y}=e^{5x+y}[/tex]

Second partial derivatives are:

[tex]\dfrac{\partial^2 v}{\partial x^2}=(5+0)\times 5e^{5x+y}[/tex]

[tex]\dfrac{\partial^2 v}{\partial x^2}=25e^{5x+y}[/tex]

[tex]\dfrac{\partial^2 v}{\partial y^2}=e^{5x+y}[/tex]

Similarly,

[tex]\dfrac{\partial^2 v}{\partial x\partial y}=5e^{5x+y}[/tex]

[tex]\dfrac{\partial^2 v}{\partial y\partial x}=e^{5x+y}(5+0)[/tex]

[tex]\dfrac{\partial^2 v}{\partial y\partial x}=5e^{5x+y}[/tex]

Therefore, the second partial derivatives are [tex]\dfrac{\partial^2 v}{\partial x^2}=25e^{5x+y},\dfrac{\partial^2 v}{\partial y^2}=e^{5x+y},\dfrac{\partial^2 v}{\partial x\partial y}=5e^{5x+y}[/tex] and [tex]\dfrac{\partial^2 v}{\partial y\partial x}=5e^{5x+y}[/tex]

Learn more:

https://brainly.com/question/6630548