[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$4000\\
r=rate\to 2\%\to \frac{2}{100}\to &0.02\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{annually, thus once}
\end{array}\to &1\\
t=years\to &4
\end{cases}
\\\\\\
A=4000\left(1+\frac{0.02}{1}\right)^{1\cdot 4}\implies A=4000(1.02)^4\implies A\approx 4329.73[/tex]
then she turns around and grabs those 4329.73 and put them in an account getting 8% APR I assume, so is annual compounding, for 7 years.
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$4329.73\\
r=rate\to 8\%\to \frac{8}{100}\to &0.08\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{annually, thus once}
\end{array}\to &1\\
t=years\to &7
\end{cases}
\\\\\\
A=4329.73\left(1+\frac{0.08}{1}\right)^{1\cdot 7}\implies A=4329.73(1.08)^7\\\\\\ A\approx 7420.396[/tex]
add both amounts, and that's her investment for the 11 years.