A hot air balloon rising vertically is tracked by an observer located 3 miles from the lift-off point. At a certain moment, the angle between the observer's line-of-sight and the horizontal is π/3 , and it is changing at a rate of 0.1 rad/min. How fast is the balloon rising at this moment?

Respuesta :

check the picture below.

notice, the "x" distance, whilst the balloons are moving up up and up, is not changing, thus, is a constant.

[tex]\bf tan(\theta )=\cfrac{y}{x}\implies tan(\theta )=\cfrac{y}{3}\implies tan(\theta )=\cfrac{1}{3}y \\\\\\ \stackrel{chain~rule}{sec^2(\theta )\cfrac{d\theta }{dt}}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}\implies \cfrac{1}{cos^2(\theta )}\cdot \cfrac{d\theta }{dt}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}[/tex]

[tex]\bf \cfrac{3\cdot \frac{d\theta }{dt}}{cos^2(\theta )}=\cfrac{dy}{dt}\quad \begin{cases} \frac{d\theta }{dt}=0.1\\\\ \theta =\frac{\pi }{3} \end{cases}\implies \cfrac{3\cdot 0.1}{cos^2\left( \frac{\pi }{3} \right)}=\cfrac{dy}{dt}\implies \cfrac{0.3}{\left( \frac{1}{2} \right)^2}=\cfrac{dy}{dt} \\\\\\ \cfrac{0.3}{\frac{1}{4}}=\cfrac{dy}{dt}\implies \stackrel{rad/min}{1.2}=\cfrac{dy}{dt}[/tex]
Ver imagen jdoe0001

The observer and the balloon form a right triangle (see attachment).

The balloon is rising at 1.2 rad per min

Using tangent rule, we have:

[tex]\mathbf{tan(\theta) = \frac{y}{x}}[/tex]

Substitute 3 for x

[tex]\mathbf{tan(\theta) = \frac{y}{3}}[/tex]

Differentiate both sides with respect to time (t)

[tex]\mathbf{sec^2(\theta) \cdot \frac{d\theta}{dt} = \frac{1}{3} \cdot \frac{dy}{dt}}[/tex]

Make dy/dt, the subject

[tex]\mathbf{\frac{dy}{dt} = 3 \cdot sec^2(\theta) \cdot \frac{d\theta}{dt} }[/tex]

Substitute [tex]\mathbf{\theta = \frac{\pi}{3}\ and\ \frac{d\theta}{dt} = 0.1}[/tex]

So, we have:

[tex]\mathbf{\frac{dy}{dt} = 3 \cdot sec^2(\pi/3) \cdot 0.1 }[/tex]

Using a calculator, we have:

[tex]\mathbf{\frac{dy}{dt} = 3 \cdot 2^2 \cdot 0.1 }[/tex]

Multiply

[tex]\mathbf{\frac{dy}{dt} = 1.2}[/tex]

Hence, the balloon is rising at 1.2 rad per min

Read more about rates at:

https://brainly.com/question/14007695