Respuesta :
check the picture below.
notice, the "x" distance, whilst the balloons are moving up up and up, is not changing, thus, is a constant.
[tex]\bf tan(\theta )=\cfrac{y}{x}\implies tan(\theta )=\cfrac{y}{3}\implies tan(\theta )=\cfrac{1}{3}y \\\\\\ \stackrel{chain~rule}{sec^2(\theta )\cfrac{d\theta }{dt}}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}\implies \cfrac{1}{cos^2(\theta )}\cdot \cfrac{d\theta }{dt}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}[/tex]
[tex]\bf \cfrac{3\cdot \frac{d\theta }{dt}}{cos^2(\theta )}=\cfrac{dy}{dt}\quad \begin{cases} \frac{d\theta }{dt}=0.1\\\\ \theta =\frac{\pi }{3} \end{cases}\implies \cfrac{3\cdot 0.1}{cos^2\left( \frac{\pi }{3} \right)}=\cfrac{dy}{dt}\implies \cfrac{0.3}{\left( \frac{1}{2} \right)^2}=\cfrac{dy}{dt} \\\\\\ \cfrac{0.3}{\frac{1}{4}}=\cfrac{dy}{dt}\implies \stackrel{rad/min}{1.2}=\cfrac{dy}{dt}[/tex]
notice, the "x" distance, whilst the balloons are moving up up and up, is not changing, thus, is a constant.
[tex]\bf tan(\theta )=\cfrac{y}{x}\implies tan(\theta )=\cfrac{y}{3}\implies tan(\theta )=\cfrac{1}{3}y \\\\\\ \stackrel{chain~rule}{sec^2(\theta )\cfrac{d\theta }{dt}}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}\implies \cfrac{1}{cos^2(\theta )}\cdot \cfrac{d\theta }{dt}=\cfrac{1}{3}\cdot \cfrac{dy}{dt}[/tex]
[tex]\bf \cfrac{3\cdot \frac{d\theta }{dt}}{cos^2(\theta )}=\cfrac{dy}{dt}\quad \begin{cases} \frac{d\theta }{dt}=0.1\\\\ \theta =\frac{\pi }{3} \end{cases}\implies \cfrac{3\cdot 0.1}{cos^2\left( \frac{\pi }{3} \right)}=\cfrac{dy}{dt}\implies \cfrac{0.3}{\left( \frac{1}{2} \right)^2}=\cfrac{dy}{dt} \\\\\\ \cfrac{0.3}{\frac{1}{4}}=\cfrac{dy}{dt}\implies \stackrel{rad/min}{1.2}=\cfrac{dy}{dt}[/tex]
The observer and the balloon form a right triangle (see attachment).
The balloon is rising at 1.2 rad per min
Using tangent rule, we have:
[tex]\mathbf{tan(\theta) = \frac{y}{x}}[/tex]
Substitute 3 for x
[tex]\mathbf{tan(\theta) = \frac{y}{3}}[/tex]
Differentiate both sides with respect to time (t)
[tex]\mathbf{sec^2(\theta) \cdot \frac{d\theta}{dt} = \frac{1}{3} \cdot \frac{dy}{dt}}[/tex]
Make dy/dt, the subject
[tex]\mathbf{\frac{dy}{dt} = 3 \cdot sec^2(\theta) \cdot \frac{d\theta}{dt} }[/tex]
Substitute [tex]\mathbf{\theta = \frac{\pi}{3}\ and\ \frac{d\theta}{dt} = 0.1}[/tex]
So, we have:
[tex]\mathbf{\frac{dy}{dt} = 3 \cdot sec^2(\pi/3) \cdot 0.1 }[/tex]
Using a calculator, we have:
[tex]\mathbf{\frac{dy}{dt} = 3 \cdot 2^2 \cdot 0.1 }[/tex]
Multiply
[tex]\mathbf{\frac{dy}{dt} = 1.2}[/tex]
Hence, the balloon is rising at 1.2 rad per min
Read more about rates at:
https://brainly.com/question/14007695