The coordinates of the vertices of quadrilateral RSTU are R(−4, 1) , S(4, −1) , T(3, −6) , and U(−5, −4) . Which statement correctly describes whether quadrilateral RSTU is a rectangle?

Respuesta :

Answer:

For k12- the answer is Quadrilateral RSTU is not a rectangle because it has no right angles.


Step-by-step explanation:


Solution: A quadrilateral RSTU whose vertices are  R(−4, 1) , S(4, −1) , T(3, −6) , and U(−5, −4).

RS = [tex]\sqrt{(4+4)^{2}+(-1-1)^{2}} =\sqrt{64+4}= \sqrt{68}[/tex]

ST= [tex]\sqrt{(4-3)^{2}+(-1+6)^{2}}= \sqrt{1+25} =\sqrt{26}[/tex]

TU=[tex]\sqrt{(3+5)^{2}+(-6+4)^{2}}= \sqrt{64+4}= \sqrt{68}[/tex]

UR =[tex]\sqrt{(-5+4)^{2}+(-4-1)^{2}}= \sqrt{1+25} =\sqrt{26}[/tex]

→RS=TU, and ST=UR⇒ Opposite sides are equal.

Slope of RS = [tex]\frac{-1-1}{4+4} = \frac{-2}{8}=  \frac{-1}{4}[/tex]

Slope of TS= [tex]\frac{-6+1}{3-4} =\frac{-5}{-1}=5[/tex]

Slope of RS × Slope of TS = -1/4 × 5 = -5/4 ≠ -1, So lines are not perpendicular.

∴ quadrilateral RSTU  is not a rectangle.

Ver imagen Аноним