Respuesta :
We want to determine x from the equation
x² + (x+1)² = 145
Expand.
x² + x² + 2x + 1 = 145
2x² + 2x + 1 - 145 = 0
2x² + 2x - 144 = 0
x² + x - 72 = 0
Factorize.
(x - 8)(x + 9) = 0
Therefore
x = 8, or x = -9
Answer: x = 8 or x = -9
x² + (x+1)² = 145
Expand.
x² + x² + 2x + 1 = 145
2x² + 2x + 1 - 145 = 0
2x² + 2x - 144 = 0
x² + x - 72 = 0
Factorize.
(x - 8)(x + 9) = 0
Therefore
x = 8, or x = -9
Answer: x = 8 or x = -9
Answer: " x = 8, -9 " .
___________________________________________
Explanation:
___________________________________________
Given:
___________________________________________
x² + (x + 1)² = 145 ; Solve for "x" :
___________________________________________
Note: (x+1)² = (x+1) (x+1) = x² + 1x + 1x + 1 = x² + 2x + 1 ;
___________________________________________
→ x² + (x + 1)² = x² + x² + 2x + 1 ;
= 2x² + 2x + 1 ;
__________________________________
2x² + 2x + 1 = 145 ;
Subtract "1" from each side:
__________________________________
↔ 2x² + 2x + 1 - 1 = 145 - 1 ;
to get:
__________________________________________
→ 2x² + 2x = 144 ;
__________________________________________
Now, subtract "144" from EACH SIDE of the equation:
__________________________________________
→ 2x² + 2x - 144 = 144 - 144 ;
__________________________________________
to get:
→ 2x² + 2x - 144 = 0 ;
which is an equation written in "quadratic format" that is:
" ax² + bx + c = 0 ; (a≠ 0) " ;
____________________________________
We have:
____________________________________
→ 2x² + 2x - 144 = 0 ;
____________________________________
Divide each side of the equation by "2" ; to simplify:
→ {2x² + 2x - 144} / 2 = 0 / 2 ;
____________________________________
to get:
____________________________________
→ x² + x - 72 = 0 ;
____________________________________
The "left-hand side" of the equation can be factored:
____________________________________
(x - 8) (x + 9) = 0 ;
______________________________________
→ x = 8, -9 .
______________________________________
___________________________________________
Explanation:
___________________________________________
Given:
___________________________________________
x² + (x + 1)² = 145 ; Solve for "x" :
___________________________________________
Note: (x+1)² = (x+1) (x+1) = x² + 1x + 1x + 1 = x² + 2x + 1 ;
___________________________________________
→ x² + (x + 1)² = x² + x² + 2x + 1 ;
= 2x² + 2x + 1 ;
__________________________________
2x² + 2x + 1 = 145 ;
Subtract "1" from each side:
__________________________________
↔ 2x² + 2x + 1 - 1 = 145 - 1 ;
to get:
__________________________________________
→ 2x² + 2x = 144 ;
__________________________________________
Now, subtract "144" from EACH SIDE of the equation:
__________________________________________
→ 2x² + 2x - 144 = 144 - 144 ;
__________________________________________
to get:
→ 2x² + 2x - 144 = 0 ;
which is an equation written in "quadratic format" that is:
" ax² + bx + c = 0 ; (a≠ 0) " ;
____________________________________
We have:
____________________________________
→ 2x² + 2x - 144 = 0 ;
____________________________________
Divide each side of the equation by "2" ; to simplify:
→ {2x² + 2x - 144} / 2 = 0 / 2 ;
____________________________________
to get:
____________________________________
→ x² + x - 72 = 0 ;
____________________________________
The "left-hand side" of the equation can be factored:
____________________________________
(x - 8) (x + 9) = 0 ;
______________________________________
→ x = 8, -9 .
______________________________________