Respuesta :

[tex]\bf sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\\\ tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)} \qquad \qquad cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)}\\\\ -------------------------------\\\\ \cfrac{cot(x)}{tan(x)+cot(x)}=1-sin^2(x) \\\\\\ \textit{doing the left-side}\implies \cfrac{\frac{cos(x)}{sin(x)}}{\frac{sin(x)}{cos(x)}+\frac{cos(x)}{sin(x)}}\implies \cfrac{\frac{cos(x)}{sin(x)}}{\frac{sin^2(x)+cos^2(x)}{cos(x)sin(x)}}[/tex]

[tex]\bf \cfrac{\frac{cos(x)}{sin(x)}}{\frac{1}{cos(x)sin(x)}}\implies \cfrac{cos(x)}{\underline{sin(x)}}\cdot \cfrac{cos(x)\underline{sin(x)}}{1}\implies cos^2(x)\implies 1-sin^2(x)[/tex]