Respuesta :
Answer: "x = 15 " .
_____________________________________________
Explanation:
_____________________________________________
Given:
_____________________________________________
" (x + 3) / 6 = (x − 6) / 3 " ; Solve for "x" ;
_____________________________________________
Multiply EACH SIDE of the equation by "6" ;
to get rid of the "denominators" ("fractions") :
_____________________________________________
→ 6* { (x + 3) / 6 } = 6 * { (x − 6) / 3 } ;
to get:
_____________________________________________
→ x + 3 = 2(x − 6) ;
_____________________________________________
Note the "distributive property of multiplication" :
_____________________________________________
a(b + c) = ab + ac ;
a(b − c) = ab − ac ;
_____________________________________________
As such:
_____________________________________________
→ 2(x − 6) = (2*x) − (2* 6) = 2x − 12 ;
_____________________________________________
So; we can rewrite the original equation:
_____________________________________________
" x + 3 = 2(x − 6) " ;
→ by substituting: "2x − 12" ; [ in lieu of: "2(x − 6)" ] ; as follows:
______________________________________________________
→ x + 3 = 2x − 12 ;
Now, we can subtract "x"; and can add "12" ; to EACH SIDE of the equation:
→ x + 3 − x + 12 = 2x − 12 − x + 12 ;
to get: 15 = x ;
↔ x = 15 ; which is our answer.
______________________________________________
_____________________________________________
Explanation:
_____________________________________________
Given:
_____________________________________________
" (x + 3) / 6 = (x − 6) / 3 " ; Solve for "x" ;
_____________________________________________
Multiply EACH SIDE of the equation by "6" ;
to get rid of the "denominators" ("fractions") :
_____________________________________________
→ 6* { (x + 3) / 6 } = 6 * { (x − 6) / 3 } ;
to get:
_____________________________________________
→ x + 3 = 2(x − 6) ;
_____________________________________________
Note the "distributive property of multiplication" :
_____________________________________________
a(b + c) = ab + ac ;
a(b − c) = ab − ac ;
_____________________________________________
As such:
_____________________________________________
→ 2(x − 6) = (2*x) − (2* 6) = 2x − 12 ;
_____________________________________________
So; we can rewrite the original equation:
_____________________________________________
" x + 3 = 2(x − 6) " ;
→ by substituting: "2x − 12" ; [ in lieu of: "2(x − 6)" ] ; as follows:
______________________________________________________
→ x + 3 = 2x − 12 ;
Now, we can subtract "x"; and can add "12" ; to EACH SIDE of the equation:
→ x + 3 − x + 12 = 2x − 12 − x + 12 ;
to get: 15 = x ;
↔ x = 15 ; which is our answer.
______________________________________________