Respuesta :

thytr
7.0 g O2 X (1 mol O2 / 32 g O2) X (4 mol KO2 / 3 mol O2) X (71.1 g/mol) = 21 g KO2

Answer : The mass of [tex]CO_2[/tex] used are 9.68 grams.

Explanation : Given,

Mass of [tex]O_2[/tex] = 7.0 g

Molar mass of [tex]O_2[/tex] = 32 g/mole

Molar mass of [tex]CO_2[/tex] = 44 g/mole

The balanced chemical reaction will be,

[tex]CO_2\rightarrow C+O_2[/tex]

First we have to calculate the moles of [tex]O_2[/tex].

[tex]\text{ Moles of }O_2=\frac{\text{ Mass of }O_2}{\text{ Molar mass of }O_2}=\frac{7.0g}{32g/mole}=0.22moles[/tex]

Now we have to calculate the moles of [tex]CO_2[/tex].

From the balanced chemical reaction we conclude that,

As, 1 mole of [tex]O_2[/tex] produced form 1 mole of [tex]CO_2[/tex]

So, 0.22 mole of [tex]O_2[/tex] produced form 0.22 mole of [tex]CO_2[/tex]

Now we have to calculate the mass of [tex]CO_2[/tex].

[tex]\text{ Mass of }CO_2=\text{ Moles of }CO_2\times \text{ Molar mass of }CO_2[/tex]

[tex]\text{ Mass of }CO_2=(0.22moles)\times (44g/mole)=9.68g[/tex]

Therefore, the mass of [tex]CO_2[/tex] used are 9.68 grams.