Respuesta :
The equation of a line:
[tex]y=mx+b[/tex]
[tex](1,35) \\ x_1=1 \\ y_1=35 \\ \\ (3,57) \\ x_2=3 \\ y_2=57 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{57-35}{3-1}=\frac{22}{2}=11 \\ \Downarrow \\ y=11x+b \\ \hbox{plug the values of } x_1 \hbox{ and } y_1 \hbox{ into the equation:} \\ 35=11 \times 1 + b\\ 35=11+b \\ 35-11=b \\ b=24 \\ \\ \boxed{y=11x+24}[/tex]
The answer is D.
[tex]y=mx+b[/tex]
[tex](1,35) \\ x_1=1 \\ y_1=35 \\ \\ (3,57) \\ x_2=3 \\ y_2=57 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\frac{57-35}{3-1}=\frac{22}{2}=11 \\ \Downarrow \\ y=11x+b \\ \hbox{plug the values of } x_1 \hbox{ and } y_1 \hbox{ into the equation:} \\ 35=11 \times 1 + b\\ 35=11+b \\ 35-11=b \\ b=24 \\ \\ \boxed{y=11x+24}[/tex]
The answer is D.