Respuesta :
The answer is: " 32a² − 24a − 8 " .
__________________________________________________
Given:
__________________________________________________
(8a − 8)(4a + 1) ; Let us expand this expression using the: "FOIL" method.
___________________________________________________
"FOIL" stands for "First terms, Outer terms, Inner Terms, Last Terms" ;
in that order.
___________________________________________________
Basically:
_______________________________________________________
(a + b)(c + d) = ac + ad + bc + bd ;
in which the:
First term is: "ac" ;
Outer term is: "ad" ;
I nner term is: "bc" ;
Last term is: "bd " .
__________________________________
So; we have (given):
(8a − 8)(4a + 1) ;
__________________________________________________
Let's take the "First, Outer, Inner, and Last terms" ; as follows:
__________________________________________________
F: (8a)*(4a) = 32a² ;
__________________________________________________
O: (8a)*(1) = 8a ;
__________________________________________________
I : (-8)*(4a) = -32a ;
__________________________________________________
L: (-8)*(1) = -8
__________________________________________________
Now, let us write out these terms:
__________________________________________________
32a² + 8a − 32a - 8 ;
__________________________________________________
Now, combine the "like terms" in this expression; to simplify:
+ 8a − 32a = -24a ;
__________________________________________________
and rewrite the simplified expression ; which is:
__________________________________________________
32a² − 24a − 8 .
______________________________________________________
__________________________________________________
Given:
__________________________________________________
(8a − 8)(4a + 1) ; Let us expand this expression using the: "FOIL" method.
___________________________________________________
"FOIL" stands for "First terms, Outer terms, Inner Terms, Last Terms" ;
in that order.
___________________________________________________
Basically:
_______________________________________________________
(a + b)(c + d) = ac + ad + bc + bd ;
in which the:
First term is: "ac" ;
Outer term is: "ad" ;
I nner term is: "bc" ;
Last term is: "bd " .
__________________________________
So; we have (given):
(8a − 8)(4a + 1) ;
__________________________________________________
Let's take the "First, Outer, Inner, and Last terms" ; as follows:
__________________________________________________
F: (8a)*(4a) = 32a² ;
__________________________________________________
O: (8a)*(1) = 8a ;
__________________________________________________
I : (-8)*(4a) = -32a ;
__________________________________________________
L: (-8)*(1) = -8
__________________________________________________
Now, let us write out these terms:
__________________________________________________
32a² + 8a − 32a - 8 ;
__________________________________________________
Now, combine the "like terms" in this expression; to simplify:
+ 8a − 32a = -24a ;
__________________________________________________
and rewrite the simplified expression ; which is:
__________________________________________________
32a² − 24a − 8 .
______________________________________________________