The relationship 1/sin(θ) is equivalent to which of the following trigonometric functions?

A. cot(θ)
B. csc(θ)
C. arcsin(θ)
D. sec(θ)

Respuesta :

[tex]\bf sin(\theta)=\cfrac{1}{csc(\theta)} \qquad % cosine cos(\theta)=\cfrac{1}{sec(\theta)} \qquad % tangent tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)} \\\\\\ % cotangent cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)} \qquad % cosecant \boxed{csc(\theta)=\cfrac{1}{sin(\theta)}} \qquad % secant sec(\theta)=\cfrac{1}{cos(\theta)}[/tex]

Answer:

Option B is the correct answer.

Step-by-step explanation:

We have the following trigonometric relations

      [tex]cosec\theta =\frac{1}{sin\theta }\\\\sec\theta =\frac{1}{cos\theta }\\\\cot\theta =\frac{1}{tan\theta }\\\\cot\theta =\frac{cos\theta}{sin\theta }\\\\tan\theta =\frac{sin\theta}{cos\theta }[/tex]

Here cosec θ is the correct answer.

Option B is the correct answer.