Respuesta :
[tex]\bf sin(\theta)=\cfrac{1}{csc(\theta)}
\qquad
% cosine
cos(\theta)=\cfrac{1}{sec(\theta)}
\qquad
% tangent
tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}
\\\\\\
% cotangent
cot(\theta)=\cfrac{cos(\theta)}{sin(\theta)}
\qquad
% cosecant
\boxed{csc(\theta)=\cfrac{1}{sin(\theta)}}
\qquad
% secant
sec(\theta)=\cfrac{1}{cos(\theta)}[/tex]
Answer:
Option B is the correct answer.
Step-by-step explanation:
We have the following trigonometric relations
[tex]cosec\theta =\frac{1}{sin\theta }\\\\sec\theta =\frac{1}{cos\theta }\\\\cot\theta =\frac{1}{tan\theta }\\\\cot\theta =\frac{cos\theta}{sin\theta }\\\\tan\theta =\frac{sin\theta}{cos\theta }[/tex]
Here cosec θ is the correct answer.
Option B is the correct answer.