Answer:
Initial temperature = 212.35 K or -60.65°C
Explanation:
Boyle - Gay Lussac's Law:
If the amount of particles is constant inside an enclosed container, then the Pressure is inversely proportional to the Volume but direct proportional to the Temperature:
[tex]\boxed{\frac{P_1\cdot V_1}{T_1} =\frac{P_2\cdot V_2}{T_2}}[/tex]
where:
Given:
V₁ = 3.00 L
P₁ = 75.4 kPa
V₂ = 4.00 L
P₂ = 72.7 kPa
T₂ = 0°C = 273 K
[tex]\displaystyle\frac{P_1\cdot V_1}{T_1} =\frac{P_2\cdot V_2}{T_2}[/tex]
[tex]\displaystyle\frac{75.4\times10^3(3.00)}{T_1} =\frac{72.7\times10^3(4.00)}{273}[/tex]
[tex]\displaystyle\frac{75.4\times3}{T_1} =\frac{72.7\times4}{273}[/tex]
[tex]\displaystyle T_1 =\frac{75.4(3)(273)}{72.7(4)}[/tex]
[tex]T_1=212.35\ K[/tex]
[tex]=(212.35-273)^oC[/tex]
[tex]=-60.65^oC[/tex]