Answer:
x = 0.22
Step-by-step explanation:
To solve the equation [tex]25^x = 2[/tex] using logarithms, we can take the logarithm of both sides. Specifically, we'll use the natural logarithm (ln) to maintain consistency.
Given:
[tex]25^x = 2[/tex]
Taking the natural logarithm of both sides:
[tex] \ln(25^x) = \ln(2) [/tex]
Using the property of logarithms that [tex] \ln(a^b) = b \cdot \ln(a) [/tex], we get:
[tex] x \cdot \ln(25) = \ln(2) [/tex]
Now, to isolate [tex]x[/tex], we divide both sides by [tex]\ln(25)[/tex]:
[tex] x = \dfrac{\ln(2)}{\ln(25)} [/tex]
Using a calculator:
[tex] x \approx \dfrac{0.6931471806}{3.218875825} [/tex]
[tex] x\approx 0.215338279 [/tex]
[tex] x \approx 0.22 \textsf{(in nearest hundredth)}[/tex]
Therefore, the value of x is 0.22