On their 1200 kilometer trip to Texas, the Hiltons first took a train and later a plane. The train, traveling at 48 km/hour, took 2 hours longer than the plane, traveling 240 km/h. How long did the whole trip take?

Respuesta :

Answer:

The whole trip took [tex]9\frac{2}{3} \ hours[/tex].

Step-by-step explanation:

For Uniform Motion in a Straight Line:

[tex]\boxed{distance\ (s)=velocity\ (v)\times time\ (t)}[/tex]

Given:

total distance (s) = 1200 km

train's velocity ([tex]v_t[/tex]) = 48 km/h

plane's velocity ([tex]v_p[/tex]) = 240 km/h

train's time ([tex]t_t[/tex]) = plane's time ([tex]t_p[/tex]) + 2 hours

Let:

train's distance ([tex]s_t[/tex]) = x km

Then:

plane's distance ([tex]s_p[/tex]) = total distance - train's distance

                                 = (1200 - x) km

[tex]s_t=v_t\times t_t[/tex]

[tex]x=48t_t[/tex]

[tex]t_t=\frac{x}{48} \ hours[/tex] ... [1]

[tex]s_p=v_p\times t_p[/tex]

[tex]1200-x=240t_p[/tex]

[tex]t_p=\frac{1200-x}{240} \ hours[/tex] ... [2]

[tex]t_t =t_p+2[/tex]

[tex]\frac{x}{48}=\frac{1200-x}{240}+2[/tex]

[tex]\frac{5x}{240}=\frac{1200-x}{240}+2[/tex]

[tex]2=\frac{5x-(1200-x)}{240}[/tex]

[tex]2\times240=6x-1200[/tex]

[tex]6x=480+1200[/tex]

[tex]x=280\ km[/tex]

[1]

[tex]t_t=\frac{x}{48}[/tex]

   [tex]=\frac{280}{48}[/tex]

   [tex]=5\frac{5}{6} \ hours[/tex]

[2]

[tex]t_p=\frac{1200-x}{240}[/tex]

   [tex]=\frac{1200-280}{240}[/tex]

   [tex]=3\frac{5}{6} \ hours[/tex]

[tex]total\ time=t_t+t_p[/tex]

                [tex]=5\frac{5}{6} +3\frac{5}{6}[/tex]

                [tex]=9\frac{2}{3} \ hours[/tex]