Respuesta :
To check whether a function is a solution of the given differential equation, we need to substitute the function into the equation and see if it satisfies the equation.
Let's go through each function: (a) y = e^-x To find y', we take the derivative of y with respect to x: y' = -e^-x Now let's substitute y' and y into the equation: 2y' = 2(-e^-x) = -2e^-x 5y = 5(e^-x) = 5e^-x 2y' + 5y = -2e^-x + 5e^-x = 3e^-x Since 2y' + 5y equals 3e^-x, the function y = e^-x is a solution to the differential equation. (b) y = e^-x + e^-(5/2)x Let's find y' first: y' = -e^-x - (5/2)e^-(5/2)x Substituting y' and y into the equation: 2y' = 2(-e^-x - (5/2)e^-(5/2)x) = -2e^-x - 5e^-(5/2)x 5y = 5(e^-x + e^-(5/2)x) = 5e^-x + 5e^-(5/2)x 2y' + 5y = -2e^-x - 5e^-(5/2)x + 5e^-x + 5e^-(5/2)x = 3e^-x Again, 2y' + 5y equals 3e^-x. So, the function y = e^-x + e^-(5/2)x is a solution to the differential equation. (c) y = e^-x + Ce^-(5/2)x (C is a constant) Taking the derivative of y: y' = -e^-x - (5/2)Ce^-(5/2)x Substituting y' and y into the equation: 2y' = 2(-e^-x - (5/2)Ce^-(5/2)x) = -2e^-x - 5Ce^-(5/2)x 5y = 5(e^-x + Ce^-(5/2)x) = 5e^-x + 5Ce^-(5/2)x 2y' + 5y = -2e^-x - 5Ce^-(5/2)x + 5e^-x + 5Ce^-(5/2)x = 3e^-x Once again, 2y' + 5y equals 3e^-x. Therefore, the function y = e^-x + Ce^-(5/2)x (where C is a constant) is also a solution to the differential equation. In conclusion, all three functions y = e^-x, y = e^-x + e^-(5/2)x, and y = e^-x + Ce^-(5/2)x (C is a constant) are solutions to the differential equation 2y' + 5y = 3e^-x.
Answer:
Refer below.
Step-by-step explanation:
The task involves checking whether the given functions are a solution to the given differential equation.
Given differential equation:
[tex]2y'+5y=3e^{-x}[/tex]
Asummed solutions:
[tex]\text{(a) } y = e^{-x}\\\\\text{(b) } y = e^{-x}+e^{-\frac{5}{2}x}\\\\\text{(c) } y = e^{-x}+Ce^{-\frac{5}{2}x}[/tex]
[tex]\hrulefill[/tex]
Answering Part (a):[tex]\hrulefill[/tex]
For the function y = e⁻ˣ we will find the first and second derivatives of 'y':
- y = e⁻ˣ
- y' = -e⁻ˣ
Substitute these expressions into the differential equation:
[tex]\Longrightarrow 2\left(-e^{-x}\right)+5\left(e^{-x}\right)=3e^{-x}[/tex]
Simplify the above equation, if the L.H.S equals the R.H.S then 'y' is a solution to the differential equation:
[tex]\Longrightarrow -2e^{-x}+5e^{-x}=3e^{-x}\\\\\\\\\therefore 3e^{-x}=3e^{-x} \ \checkmark[/tex]
Thus, y = e⁻ˣ is a solution to the given differential equation.
[tex]\hrulefill[/tex]
Answering Part (b):[tex]\hrulefill[/tex]
For the function y = e⁻ˣ + e^(-5x/2) we will find the first and second derivatives of 'y':
[tex]\bullet \ y = e^{-x}+e^{-\frac{5}{2}x}\\\\\bullet \ y' = -e^{-x}-\dfrac{5}{2}e^{-\frac{5}{2}x}[/tex]
Substitute these expressions into the differential equation:
[tex]\Longrightarrow 2\left( -e^{-x}-\dfrac{5}{2}e^{-\frac{5}{2}x}\right)+5\left( e^{-x}+e^{-\frac{5}{2}x}\right)=3e^{-x}[/tex]
Simplify the above equation, if the L.H.S equals the R.H.S then 'y' is a solution to the differential equation:
[tex]\Longrightarrow -2e^{-x}-5e^{-\frac{5}{2}x}+ 5e^{-x}+5e^{-\frac{5}{2}x}=3e^{-x}[/tex]
[tex]\therefore 3e^{-x}=3e^{-x} \ \checkmark[/tex]
Thus, y = e⁻ˣ + e^(-5x/2) is a solution to the given differential equation.
[tex]\hrulefill[/tex]
Answering Part (c):[tex]\hrulefill[/tex]
For the function y = e⁻ˣ + Ce^(-5x/2) we will find the first and second derivatives of 'y':
[tex]\bullet \ y = e^{-x}+Ce^{-\frac{5}{2}x}\\\\\bullet \ y' = -e^{-x}-\bar Ce^{-\frac{5}{2}x}[/tex]
Substitute these expressions into the differential equation:
[tex]\Longrightarrow 2\left( -e^{-x}-\bar Ce^{-\frac{5}{2}x}\right)+5\left( e^{-x}+Ce^{-\frac{5}{2}x}\right)=3e^{-x}[/tex]
Simplify the above equation, if the L.H.S equals the R.H.S then 'y' is a solution to the differential equation:
[tex]\Longrightarrow -2e^{-x}- \bar Ce^{-\frac{5}{2}x}\right)+5e^{-x}+\bar Ce^{-\frac{5}{2}x}\right)=3e^{-x}[/tex]
[tex]\therefore 3e^{-x}+Ce^{-\frac{5}{2}x}=3e^{-x}[/tex]
Thus, y = e⁻ˣ + Ce^(-5x/2) may or may not be a solution to the DE, it will depend upon the value of the arbitrary constant 'C'.