If it takes frank three hours to assemble seven bikes, how long will it take him to assemble the 35 needed for the Christmas sale?

Respuesta :

Answer:

Step-by-step explanation:

.

msm555

Answer:

15 hours

Step-by-step explanation:

If it takes Frank 3 hours to assemble 7 bikes, we can find the rate at which he assembles bikes per hour.

Frank's rate is given by the ratio:

[tex] \textsf{Rate} = \dfrac{\textsf{Number of bikes}}{\textsf{Time}} [/tex]

So, Frank's rate is:

[tex] \textsf{Rate} = \dfrac{7 \, \textsf{bikes}}{3 \, \textsf{hours}} [/tex]

Now, we can find the rate per hour:

[tex] \textsf{Rate per hour} = \dfrac{7}{3} \, \textsf{bikes/hour} [/tex]

To find out how long it will take him to assemble 35 bikes, we can set up a proportion using the rate per hour:

[tex] \dfrac{\textsf{Number of bikes}}{\textsf{Time}} = \dfrac{\textsf{Rate per hour}}{1} [/tex]

Substitute the values:

[tex] \dfrac{35}{\textsf{Time}} = \dfrac{7}{3} [/tex]

Now, solve for the time ([tex]\textsf{Time}[/tex]):

[tex] \textsf{Time} = \dfrac{35 \times 3}{7} [/tex]

[tex] \textsf{Time} = \dfrac{105}{7} [/tex]

[tex] \textsf{Time} = 15 \, \textsf{hours} [/tex]

So, it will take Frank 15 hours to assemble the 35 bikes needed for the Christmas sale.