Answer:
[tex] \dfrac{4}{3} \pi 2^3 + \pi 2^2( 15) [/tex]
Explanation:
Since, the capsule is in the shape of two semi spheres and one cylinder, in a whole 1 sphere and 1 cylinder.
To find the volume of a capsule with a given radius [tex] r [/tex] and length [tex] l [/tex], we use :
[tex] V = \textsf{Volume of sphere} + \textsf{Volume of cylinder} [/tex]
Mathematically, the formula is:
[tex] V = \dfrac{4}{3} \pi r^3 + \pi r^2 l [/tex]
where,
In this case;
Given:
We substitute these values into the formula:
[tex] V = \dfrac{4}{3} \pi (2)^3 + \pi (2)^2 (15) [/tex]
[tex] V = \dfrac{4}{3} \pi 2^3 + \pi 2^2( 15) [/tex]
So, the required equation is:
[tex] \dfrac{4}{3} \pi 2^3 + \pi 2^2( 15) [/tex]
Note:
Here, I suppose the length of whole capsule is 19 mm.