We are given the line 7-4x=7y.
If we write this line in the form y=mx+k, then m is the slope of the line.
7-4x=7y
7y=-4x+7
y=(-4/7)x+1
the slope of the line is -4/7
Any line parallel to this line must also have a slope equal to -4/7.
We want precisely the one passing through (2, 0) and having slope -4/7.
Using the point-slope form of the equation of a line:
(y-0)=-4/7(x-2)
y=(-4/7)x+8/7
Answer: y=(-4/7)x+8/7
another form is 4x+7y-8=0