A ball is thrown from an initial height of 1 meter with an initial upward velocity of 13 m/s. The ball's height h (in meters) after t seconds is given by the following.

h=1+13t-5t^2

Find all values of t for which the ball's height is 8 meters.

Round your answer(s) to the nearest hundredth.
(If there is more than one answer, use the "or" button.)

Respuesta :

Here the answer is: 0.76 and 1.84

I hope I don't have to explain it again.






For t=1.84 and t=0.76 the ball's height is 8 meters in equation h=1+13t-[tex]5t^{2}[/tex].

What is equation?

An equation is a relationship between two or more variables expressed in equal to form. Equation of two variables look like ax+ by=c. It is solved in order to find the values of variables.

How to solve equation?

We have been given an equation h=1+13t-[tex]5t^{2}[/tex] and we have to find the values of t for which h=8.

So,

1+13t-[tex]5t^{2}[/tex]=8

[tex]-5t^{2}[/tex]+13t+1-8=0

[tex]-5t^{2}[/tex]+13t-7=0

Removing negative signs.

[tex]5t^{2}[/tex]-13t+7=0

We cannot solve through factorization so e use the following formula:

x=-b+-[tex]\sqrt{b^{2} -4ac}/2a[/tex]

t=(13+-[tex]\sqrt{-13^{2} -4*5*7}[/tex])/2*5

t=(13+-[tex]\sqrt{169-140}[/tex])/10

t=(13+5.38)/10, (13-5.38)/10

t=1.838, 0.762

By rounding off to nearest hundred t=1.84, 0.76.

Hence value of t for which h=8 meters are 1.84 and 0.76.

Learn more about equations at https://brainly.com/question/2972832

#SPJ2