For which of the following is x=-5 a solution? Select all that apply. A) x+10=-5 B) -x^2+50=25 C) l2xl =10 D) x<0 E) 2x<10

Respuesta :

Let's check each of the cases to determine the solution of the problem

case A) we have

[tex]x+10=-5[/tex]

Substitute the value of [tex]x=-5[/tex] in the equation

[tex](-5)+10=-5[/tex]

[tex]5=-5[/tex] ------> the equation is not true

therefore

The value of [tex]x=-5[/tex] is not a solution of the equation

case B) we have

[tex]-x^{2} +50=25[/tex]

Substitute the value of [tex]x=-5[/tex] in the equation

[tex]-(-5)^{2} +50=25[/tex]

[tex]-(25) +50=25[/tex]

[tex]25=25[/tex] ------> the equation is true

therefore

The value of [tex]x=-5[/tex] is a solution of the equation [tex]-x^{2} +50=25[/tex]

case C) we have

[tex]\left|2x\right|=10[/tex]

Substitute the value of [tex]x=-5[/tex] in the equation

[tex]\left|2(-5)\right|=10[/tex]

[tex]\left|-10\right|=10[/tex]

[tex]10=10[/tex] -----> the equation is true

therefore

The value of [tex]x=-5[/tex] is a solution of the equation [tex]\left|2x\right|=10[/tex]

case D) we have

[tex]x < 0[/tex]

Substitute the value of [tex]x=-5[/tex] in the inequality

[tex]-5 < 0[/tex] --------> the inequality is true

therefore

The value of [tex]x=-5[/tex] is a solution of the inequality [tex]x < 0[/tex]

case E) we have

[tex]2x <10[/tex]

Substitute the value of [tex]x=-5[/tex] in the inequality

[tex]2*(-5) < 10[/tex]

[tex]-10 < 10[/tex] --------> the inequality is true

therefore

The value of [tex]x=-5[/tex] is a solution of the inequality [tex]2x <10[/tex]

the answer is

[tex]-x^{2} +50=25[/tex]

[tex]\left|2x\right|=10[/tex]

[tex]x < 0[/tex]

[tex]2x <10[/tex]



Answer:

Step-by-step explanation:

Ver imagen gabjohnson