Respuesta :

8a)

[tex]\bf \textit{Amount of Population Growth}\\\\ A=Ie^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ I=\textit{initial amount}\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\\ \end{cases}\qquad \begin{cases} year\ 0\\ -----\\ t=0\\ A=42679 \end{cases} \\\\\\ 42679=Ie^{k0}\implies 42679=I\cdot 1\implies 42679=I\qquad thus \\\\\\ \boxed{A=42679e^{rt}}[/tex]

now, let's fast-forward 8 years later, t = 8, the population has dropped  to 33247, so A = 33247, what's "r", or in your paper, it uses "k", anyhow, is just the rate.

[tex]\bf A=42679e^{rt}\qquad \begin{cases} t=8\\ A=33247 \end{cases}\implies 33247=42679e^{r8} \\\\\\ \cfrac{33247}{42679}=e^{8r}\impliedby \textit{let's now take \underline{ln} to both sides} \\\\\\ ln\left( \frac{33247}{42679} \right)=ln(e^{8r})\implies ln\left( \frac{33247}{42679} \right)=8r\implies \cfrac{ln\left( \frac{33247}{42679} \right)}{8}=r \\\\\\ -0.0312178\approx r\qquad now\ 100\cdot r\approx -3.1\%[/tex]

is a negative rate, because, the population is decreasing.

-------------------------------------------------------------------

8)

how many days does it take for 60% of the population to know about the crime?  well, what's 60% of 1,150,000? well (60/100) * 1,150,000, or 69000.

[tex]\bf P(t)=1150000e^{-0.03t}\implies 690000=1150000e^{-0.03t} \\\\\\ \cfrac{690000}{1150000}=e^{-0.03t}\implies \cfrac{3}{5}=e^{-0.03t} \\\\\\ \textit{again, we take \underline{ln} to both sides} \\\\\\ ln\left( \frac{3}{5} \right)=ln(e^{-0.03t})\implies ln\left( \frac{3}{5} \right)=-0.03t \\\\\\ \cfrac{ln\left( \frac{3}{5} \right)}{-0.03}=t\implies 17.0275\approx t[/tex]

so.. roughly about 17 days.