[tex]\bf \qquad \qquad \textit{double proportional variation}\\\\
\begin{array}{llll}
\textit{\underline{y} varies directly with \underline{x}}\\
\textit{and inversely with \underline{z}}
\end{array}\implies y=\cfrac{kx}{z}\impliedby
\begin{array}{llll}
k=constant\ of\\
\qquad variation
\end{array}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \begin{cases}
p=pedalisi\\
w=weight\\
s=\textit{sitting height}
\end{cases}\quad
\begin{array}{llll}
%pelidisi, varies directly as the cube root of a person's weight in grams and inversely as the person's sitting height in centimeters.
\textit{pelidisi varies directly}\\
\textit{as cube root of weight}\\
\textit{and inversely to }\\
\textit{sitting height}
\end{array}\implies p=\cfrac{k\sqrt[3]{w}}{s}\\\\
-------------------------------[/tex]
[tex]\bf \textit{we know that }
\begin{cases}
w=48,820\\
s=78.7\\
p=100
\end{cases}\implies 100=\cfrac{k\sqrt[3]{48820}}{78.7}
\\\\\\
100\cdot 78.7=k\sqrt[3]{48820}\implies \cfrac{7870}{\sqrt[3]{48820}}=k
\\\\\\
thus\qquad \boxed{p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{w}}{s}}
\\\\\\
\textit{now, what is \underline{p} when }
\begin{cases}
w=54,688\\
s=72.6
\end{cases}?\implies p=\cfrac{\frac{7870}{\sqrt[3]{48820}}\sqrt[3]{54688}}{72.6}[/tex]
now, if that value is less than 100, then the fellow is "undernourished", otherwise, is overfed.