Respuesta :
First express ∛81 as an exponential expression, using the properties of exponents and roots:
[tex] \sqrt[3]{81}= 81^{ \frac{1}{3} }= (3^{4}) ^{ \frac{1}{3} }= 3^{ \frac{4}{3} } [/tex]
The area of the rectangle = length*width
=[tex]3^{ \frac{4}{3} } * 3^{ \frac{2}{3} } =3^{(\frac{4}{3} +\frac{2}{3}) }=3^{ \frac{6}{3} }= 3^{2}=9 [/tex] (inches squared).
Answer: 9 inches squared
[tex] \sqrt[3]{81}= 81^{ \frac{1}{3} }= (3^{4}) ^{ \frac{1}{3} }= 3^{ \frac{4}{3} } [/tex]
The area of the rectangle = length*width
=[tex]3^{ \frac{4}{3} } * 3^{ \frac{2}{3} } =3^{(\frac{4}{3} +\frac{2}{3}) }=3^{ \frac{6}{3} }= 3^{2}=9 [/tex] (inches squared).
Answer: 9 inches squared
We have
length = ∛81
width = [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] \sqrt[3]{81} [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 81^{ \frac{1}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] ( 3^{4}) ^{ \frac{1}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 3^{ \frac{4}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 3^{ \frac{6}{3} } [/tex]
Area = [tex] 3^{2} [/tex]
Area = 9 inches squared
length = ∛81
width = [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] \sqrt[3]{81} [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 81^{ \frac{1}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] ( 3^{4}) ^{ \frac{1}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 3^{ \frac{4}{3} } [/tex] × [tex] 3^{ \frac{2}{3} } [/tex]
Area = [tex] 3^{ \frac{6}{3} } [/tex]
Area = [tex] 3^{2} [/tex]
Area = 9 inches squared