If the following fraction is reduced, what will be the exponent on the p? -5p^5q^4/ 8p^2q^2

A. 5
B.4
C.3
D.2

Respuesta :

-5p^5q^4/ 8p^2q^2
= -5p^3q^2

exponent on the p will be 3

answer
C.3
[tex]\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^{ n}} \qquad \qquad \cfrac{1}{a^{ n}}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\ -------------------------------\\\\ \cfrac{-5p^5q^4}{8p^2q^2}\implies \cfrac{-5p^5q^4p^{-2}q^{-2}}{8}\implies \cfrac{-5p^5p^{-2}q^4q^{-2}}{8} \\\\\\ \cfrac{-5p^{5-2}q^{4-2}}{8}\implies \cfrac{-5\boxed{p^3} q^2}{8}[/tex]