Respuesta :
x^3-x^2-12x=0 factor out x
x(x^2-x-12)=0 factor parenthetical expression
x(x^2-4x+3x-12)=0
x(x(x-4)+3(x-4))=0
x(x+3)(x-4)=0
So x=-3, 0, 4
So c) 0, 4, -3
x(x^2-x-12)=0 factor parenthetical expression
x(x^2-4x+3x-12)=0
x(x(x-4)+3(x-4))=0
x(x+3)(x-4)=0
So x=-3, 0, 4
So c) 0, 4, -3
Answer:
The correct option is c.
Step-by-step explanation:
The given function is
[tex]f(x)=x^3-x^2-12x[/tex]
Taking out the common factors.
[tex]f(x)=x(x^2-x-12)[/tex]
Now, factorize the parenthesis.
[tex]f(x)=x(x^2-4x+3x-12)[/tex]
[tex]f(x)=x(x(x-4)+3(x-4))[/tex]
[tex]f(x)=x(x-4)(x+3)[/tex]
Equate the function equal to 0, to find the zeros of the polynomial function f(x).
[tex]f(x)=0[/tex]
[tex]x(x-4)(x+3)=0[/tex]
Using zero product property, we get
[tex]x=0[/tex]
[tex]x-4=0\Rightarrow x=4[/tex]
[tex]x+3=0\Rightarrow x=-3[/tex]
The zeros of the polynomial function f(x) are 0,4,-3. Therefore the correct option is c.