Respuesta :
distance formula : sqrt (x2 - x1)^2 + (y2 - y1)^2
(22,27)....x1 = 22 and y1 = 27
(2,-10)....x2 = 2 and y2 = -10
now we sub
d = sqrt (2 - 22)^2 + (-10 -27)^2)
d = sqrt (-20^2) + (-37^2)
d = sqrt (400 + 1369)
d = sqrt 1769
d = 42.06 <==
(22,27)....x1 = 22 and y1 = 27
(2,-10)....x2 = 2 and y2 = -10
now we sub
d = sqrt (2 - 22)^2 + (-10 -27)^2)
d = sqrt (-20^2) + (-37^2)
d = sqrt (400 + 1369)
d = sqrt 1769
d = 42.06 <==
Answer:
42.06
Step-by-step explanation:
Two points (22,27) and (2,-10)
using distance formula:
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
So, distance between (22,27) and (2,-10) is D
[tex]D=\sqrt{(22-2)^2+(27-(-10))^2}[/tex]
[tex]D=\sqrt{(20)^2+(37)^2}[/tex]
[tex]D=\sqrt{400+1369}[/tex]
[tex]D=\sqrt{1769}[/tex]
[tex]D=42.059[/tex]
Round off two decimal place.
[tex]D=42.06[/tex]
Hence, The distance between the points is 42.06