Remark:
[tex]S_n=2*1+2*2+2*3+...+2*n=2(1+2+3+...+n)[/tex]
[tex]1+2+3+...+n= \frac{n(n+1)}{2} [/tex], by the famous Gauss formula.
So the formula for [tex]S_n[/tex] is:
[tex]S_n=2*\frac{n(n+1)}{2}=n(n+1)[/tex]
these types of formulas are proven by Induction.
The first step is proving for n=1,
then the next step is assuming Sn is valid for n=k.
Answer: B. Assume that Sn is valid for n = k .