Respuesta :
Find all polar coordinates of point p where p = ordered pair 5 comma pi divided by 3.
The polar coordinate of any point can be written as:
(r, θ) = (r, θ + 2nπ) --> when positive
(r, θ) = [ - r, θ + (2n + 1)π ] --> when negative
where n is any integer.
The polar coordinates of this given point P is: P = (r, θ) = (5, π/3).
When the value of r is positive, the polar coordinate is written as P= (5, π/3) = (5, π/3 + 2nπ)
where n is any integer.
When the value of r is negative, the polar coordinate is written as P = (5, π/3) = [ - 5, π/3 + (2n + 1)π] where n is any integer.
Therefore all polar coordinates of point P are (5, π/3 + 2nπ) and [ - 5, π/3 + (2n + 1)π ].
The polar coordinates of point P are (5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex]) to (-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])
The coordinates of point p are given as:
p = (5, [tex]\pi[/tex]/3)
A point represented as (r, θ) has the following polar coordinates
(r, θ + 2n[tex]\pi[/tex]) for positive r, and (- r, θ + [2n + 1][tex]\pi[/tex]) for negative r
By comparing (r, θ) and (5, [tex]\pi[/tex]/3), we have:
r = 5
[tex]\theta = \pi/3[/tex]
So, we have:
(r,[tex]\theta[/tex]) = (r, [tex]\theta[/tex] + 2n[tex]\pi[/tex])
The equation becomes
(5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])
Also, we have:
(-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])
Hence, the polar coordinates of point P are (5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex]) to (-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])
Read more about polar coordinates at:
https://brainly.com/question/2142816