Respuesta :

Find all polar coordinates of point p where p = ordered pair 5 comma pi divided by 3.

The polar coordinate of any point can be written as:

(r, θ) = (r, θ + 2nπ)                                           --> when positive

 (r, θ) = [ - r, θ + (2n + 1)π ]                           --> when negative

 where n is any integer.

The polar coordinates of this given point P is: P = (r, θ) = (5, π/3).

When the value of r is positive, the polar coordinate is written as P= (5, π/3) = (5, π/3 + 2nπ)

where n is any integer.

When the value of r is negative, the polar coordinate is written as P = (5, π/3) = [ - 5, π/3 + (2n + 1)π] where n is any integer.

 

Therefore all polar coordinates of point P are (5, π/3 + 2nπ) and [ - 5, π/3 + (2n + 1)π ].

 

The polar coordinates of point P are (5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex]) to (-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])

The coordinates of point p are given as:

p = (5, [tex]\pi[/tex]/3)

A point represented as (r, θ) has the following polar coordinates

(r, θ + 2n[tex]\pi[/tex]) for positive r, and (- r, θ + [2n + 1][tex]\pi[/tex]) for negative r

By comparing (r, θ) and (5, [tex]\pi[/tex]/3), we have:

r = 5

[tex]\theta = \pi/3[/tex]

So, we have:

(r,[tex]\theta[/tex]) = (r, [tex]\theta[/tex] + 2n[tex]\pi[/tex])

The equation becomes

(5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])

Also, we have:

(-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])

Hence, the polar coordinates of point P are (5,[tex]\pi[/tex]/3) = (5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex]) to (-5,[tex]\pi[/tex]/3) = (-5, [tex]\pi/3[/tex] + 2n[tex]\pi[/tex])

Read more about polar coordinates at:

https://brainly.com/question/2142816