Respuesta :

Answer:

The value of x is 8.

Step-by-step explanation:

In triangle PQR and XZY,

[tex]\angle P=\angle X=90^{\circ}[/tex]

[tex]\angle Q=\angle Z[/tex]

[tex]\angle R=\angle Y[/tex]

By AA property of similarity, we can say that

[tex]\triangle PQR\sim \triangle XZY[/tex]

The similarity statement is [tex]\triangle PQR\sim \triangle XZY[/tex].

The corresponding sides of similar triangles are proportional. Since both triangles are similar, so

[tex]\frac{PQ}{QR}=\frac{XZ}{ZY}[/tex]

[tex]\frac{21}{28}=\frac{5x+2}{7x}[/tex]

[tex]\frac{3}{4}=\frac{5x+2}{7x}[/tex]

[tex]7x\times 3=(5x+2)\times 4[/tex]

[tex]21x=20x+8[/tex]

[tex]21x-20x=8[/tex]

[tex]x=8[/tex]

Therefore the value of x is 8.