Respuesta :
V = value
t = time ( number of years)
so V=1045 - 95t
to find the number of years to reach 0
0=1045-95t
1045=95t
t=11 years
let's go through the years
1045 - 95 <--- 1 year 1045 - 95(1)
1045 - 95 - 95 <--- 2 year 1045 - 95(2)
1045 - 95 - 95 - 95 <--- 3rd year 1045 - 95(3)
1045 - 95 - 95 - 95 - 95 <---- 4th year 1045 - 95(4)
1045 - 95 - 95 - 95 - 95 - 95 <--- 5th year 1045 - 95(5)
thus
1045 - 95(t) <--- after "t" years, where t > 0
so the price P = 1045 - 95t
when does it reach 0? when P = 0
[tex]\bf 0=1045-95t\implies 95t=1045\implies t=\cfrac{1045}{95}\implies \boxed{t=11}[/tex]
1045 - 95 <--- 1 year 1045 - 95(1)
1045 - 95 - 95 <--- 2 year 1045 - 95(2)
1045 - 95 - 95 - 95 <--- 3rd year 1045 - 95(3)
1045 - 95 - 95 - 95 - 95 <---- 4th year 1045 - 95(4)
1045 - 95 - 95 - 95 - 95 - 95 <--- 5th year 1045 - 95(5)
thus
1045 - 95(t) <--- after "t" years, where t > 0
so the price P = 1045 - 95t
when does it reach 0? when P = 0
[tex]\bf 0=1045-95t\implies 95t=1045\implies t=\cfrac{1045}{95}\implies \boxed{t=11}[/tex]