Respuesta :
[tex]\bf \qquad \textit{Amount for Exponential change}\\\\
A=P(1\pm r)^t\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{starting amount}\to &50\\
r=rate\to 12\%\to \frac{12}{100}\to &0.12\\
t=\textit{elapsed period}\to &3\\
\end{cases}
\\\\\\
A=50(1-0.12)^3[/tex]
Answer:
The cost of the computer in 3 years is $34.07
Step-by-step explanation:
We have formula for depreciation.
[tex]P = P_0(1 - \frac{r}{100} )^n[/tex]
Where P is the final value, P_0 = initial value , r = rate of decrease and n = the number of years.
Given: P_0 = $50, r = 12 and n = 3
Now plug in the given values in the above formula, we get
[tex]P = 50(1 - \frac{12}{100} )^3[/tex]
[tex]P = 50(1 - 0.12)^3[/tex]
P = [tex]50(0.88)^3[/tex]
P = $34.07
Therefore, the cost of the computer in 3 years is $34.07