Respuesta :
Answer:
[tex](x^{\frac{3}{14}})[/tex]
Step-by-step explanation:
we know that
[tex](x^{\frac{r}{s}})^{\frac{p}{q}} = (x^{\frac{r*p}{s*q}})[/tex]
In this problem we have
[tex](x^{\frac{2}{7}})^{\frac{3}{4}}[/tex]
so
[tex](x^{\frac{2}{7}})^{\frac{3}{4}}=(x^{\frac{2*3}{7*4}})=(x^{\frac{6}{28}})[/tex]
Simplify
[tex](x^{\frac{6}{28}})=(x^{\frac{3}{14}})[/tex]