Respuesta :

(2^7)^2 __ (2^10) * (2^2)
2^(7 * 2) __ 2^(10 + 2)
2^14 __ 2^12

2^14 > 2^12

Answer:

(2^7)^2   >   2^10 * 2^2

Step-by-step explanation:

Use <, >, or = to complete the statement.

(2^7)^2------ 2^10 * 2^2

To compare we simplify the left side and right side as well

Apply exponential property

(a^m)^n = a^mn

[tex](2^7)^2 = 2^{14}[/tex]

a^m * a^n = a^m+n

[tex]2^{10} * 2^2= 2^{12}[/tex]

2^14     -------  2^12

Now we compare the exponents

14 is greater than 12

so (2^7)^2   >   2^10 * 2^2