Respuesta :
Answer:
[tex]f(x)=\left \{ {{|4-x^2|}\ \ \ \ if\ x<2 \atop {x}\ \ \ \ \ \ \ \ \ if\ x\geq 2} \right[/tex]
A is correct
Step-by-step explanation:
The given graph break at point x=2. It would be piece wise function.
- For left side of x=2, graphs is parabolic and y is always positive.
[tex]y=|4-x^2|\ \ \ \ if\ \ x<2[/tex]
- For right side of x=2, graphs is straight line and slope is positive.
[tex]y=x\ \ \ \ if\ \ x\geq 2[/tex]
Now we write as piece wise function.
[tex]f(x)=\left \{ {{|4-x^2|}\ \ \ \ if\ x<2 \atop {x}\ \ \ \ \ \ \ \ \ if\ x\geq 2} \right[/tex]
The given graph is combination o parabola and straight line which breaks at x=2