Respuesta :

[tex]\bf \textit{arc's length}\\\\ s=\cfrac{\theta r\pi }{180}\qquad \begin{cases} r=radius\\ \theta=\textit{angle in degrees}\\ ----------\\ \theta=360-115\\ \qquad 245\\ r=14 \end{cases}\implies s=\cfrac{245\cdot 14\cdot \pi }{180}\\\\\\
s=\cfrac{3430\pi }{180}\implies s=\cfrac{343\pi }{18}\iff s\approx 59.864793[/tex]
Length of an arc, knowing the radius and the central angle:

Arc length = (Ф/360) x (2πR)


ARC LENGTH: =(135/360)X 2π.14

ARC LENGTH 21π/2 OR 32.98 UNIT