Respuesta :
[tex]\bf \textit{arc's length}\\\\
s=\cfrac{\theta r\pi }{180}\qquad
\begin{cases}
r=radius\\
\theta=\textit{angle in degrees}\\
----------\\
\theta=360-115\\
\qquad 245\\
r=14
\end{cases}\implies s=\cfrac{245\cdot 14\cdot \pi }{180}\\\\\\
s=\cfrac{3430\pi }{180}\implies s=\cfrac{343\pi }{18}\iff s\approx 59.864793[/tex]
s=\cfrac{3430\pi }{180}\implies s=\cfrac{343\pi }{18}\iff s\approx 59.864793[/tex]
Length of an arc, knowing the radius and the central angle:
Arc length = (Ф/360) x (2πR)
ARC LENGTH: =(135/360)X 2π.14
ARC LENGTH 21π/2 OR 32.98 UNIT
Arc length = (Ф/360) x (2πR)
ARC LENGTH: =(135/360)X 2π.14
ARC LENGTH 21π/2 OR 32.98 UNIT