Respuesta :
Answer:[tex]cos\ C\times\ sin\ A=\frac{\sqrt{3} }{2}\times\ \frac{\sqrt{3} }{2}=\frac{3}{4}[/tex]
Step-by-step explanation:
Given a right triangle ABC where AB = 1, AC = 2
As it is a right triangle, thus by Pythagoras theorem
[tex]AC^2=AB^2+BC^2\\\Rightarrow2^2=1^2+BC^2\\\Rightarrow4=1+BC^2\\\Rightarrow\ BC^2=4-1=3\\\Rightarrow\ BC=\sqrt{3}[/tex]
Now ,
as [tex]sin A=\frac{sides\ opposite\ to\ angle\ A }{hypotenuse}[/tex]
[tex]sin\ A=\frac{BC}{AC}=\frac{\sqrt{3} }{2}[/tex]
and
[tex]cos C=\frac{side\ adjacent\ to\ angle\ C}{hypotenuse}[/tex]
[tex]cos\ C=\frac{BC}{AC}=\frac{\sqrt{3} }{2}[/tex]
Therefore,
[tex]cos\ C\times\ sin\ A=\frac{\sqrt{3} }{2}\times\ \frac{\sqrt{3} }{2}=\frac{3}{4}[/tex]
Answer:Cos C × Sin A = [tex]\frac{3}{4}[/tex] and BC = √3.
Step-by-step explanation:
Given : A right triangle ABC where AB = 1, AC = 2 .
To Find : BC and cos C × sin A .
Solution :We have ΔABC is a right triangle, AB = 1, AC = 2.
As it is a right triangle, thus by Pythagoras theorem
AC² = AB² +BC².
2² = 1² + BC²
4 = 1 + BC²
BC = √3.
Now ,
Sin A = [tex]\frac{side\ opposite\ of\ angle\ A}{Hypontnuse}[/tex]
Sin A = [tex]\frac{BC}{AC}[/tex].
Sin A = [tex]\frac{√3}{2}[/tex].
Cos C = [tex]\frac{side\ opposite\ of\ angle\ C}{Hypontnuse}[/tex].
Cos C = [tex]\frac{BC}{AC}[/tex].
Cos C = = [tex]\frac{√3}{2}[/tex].
Cos C × Sin A
[tex]\frac{√3}{2}[/tex] ×[tex]\frac{√3}{2}[/tex].
⇒ [tex]\frac{3}{4}[/tex].
Therefore, Cos C × Sin A = [tex]\frac{3}{4}[/tex] and BC = √3.